Function to run TMB to estimate track
runYaps( inp, maxIter = 1000, getPlsd = TRUE, getRep = TRUE, silent = TRUE, opt_fun = "nlminb", opt_controls = list(), bounds = list() ) runTmb( inp, maxIter = 1000, getPlsd = TRUE, getRep = TRUE, silent = TRUE, opt_fun = "nlminb", opt_controls = list(), bounds = list() )
inp | inp-object obtained from getInp() |
---|---|
maxIter | Sets inner.control(maxit) of the tmb-call. Increase if model is not converging. |
getPlsd, getRep | Whether or not to get sd estimates (plsd=TRUE) and reported values (getRep=TRUE). |
silent | Logical whether to keep the optimization quiet. |
opt_fun | Which optimization function to use. Default is 'nlminb' - alternative is 'nloptr' (experimental!). If using 'nloptr', `opt_controls` must be specified. |
opt_controls | List of controls passed to optimization function. For instances, tolerances such as x.tol=1E-8. If opt_fun = 'nloptr', `opt_controls` must be a list formatted appropriately. For instance: opt_controls <- list(algorithm="NLOPT_LD_AUGLAG", xtol_abs=1e-12, maxeval=2E+4, print_level = 1, local_opts= list(algorithm="NLOPT_LD_AUGLAG_EQ", xtol_rel=1e-4) ). See `?nloptr` and the NLopt site https://nlopt.readthedocs.io/en/latest/ for more info. Some algorithms in `nloptr` require bounded parameters - see `bounds`. |
bounds | List of two vectors specifying lower and upper bounds of fixed parameters. Length of each vector must be equal to number of fixed parameters. For instance, bounds = list(lb = c(-3, -1, -2), ub = c(2,0,1) ). |